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Duality and the geometric measure of entanglement of general multiqubit W states
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We find the nearest product states for arbitrary generalized W states of n qubits, and show that the nearest
product state is essentially unique if the W state is highly entangled. It is specified by a unit vector in Euclidean
n-dimensional space. We use this duality between unit vectors and highly entangled W states to find the geometric
measure of entanglement of such states.

DOI: 10.1103/PhysRevA.81.052319 PACS number(s): 03.67.Mn, 02.10.Xm, 03.65.Ud

I. INTRODUCTION

The quantification of entanglement of multipartite pure
states presents a real challenge to physicists. Intensive studies
are under way, and different entanglement measures have
been proposed over the years [1–6]. However, it is generally
impossible to calculate their value because the definition
of any multipartite entanglement measure usually includes
a massive optimization over certain quantum protocols or
states [7–9].

Inextricable difficulties of the optimization are rooted in a
tangle of different obstacles. First, the number of entanglement
parameters grows exponentially with the number of particles
involved [10]. Second, in the multipartite setting several
inequivalent classes of entanglement exist [11,12]. Third, the
geometry of entangled regions of robust states is complicated
[13]. All of these factors make the usual optimization methods
ineffective [13–15]. Concise and elegant tools are required to
overcome this problem.

A widely used measure for multipartite systems is the
geometric measure of entanglement Eg [16], that is, the
distance from the nearest product state. For an n-part pure state
ψ , it is defined as Eg(ψ) = −2 ln g(ψ), where the maximal
product overlap g(ψ) is given by

g(ψ) = max
u1,u2,...,uk

|〈ψ |u1u2 · · · uk〉|,

and the maximization is performed over all product states. The
maximal product overlap has many remarkable applications.
Among them are the following. It singles out the multipar-
tite states applicable for perfect quantum teleportation and
superdense coding [13], it can create a generalized Schmidt
decomposition for arbitrary n-part systems [17], it identifies
irregularity in channel capacity additivity [18], it quantifies the
difficulty of distinguishing multipartite quantum states by local
means [19], it is a good entanglement estimator for quantum
phase transitions in spin models [20], it detects a one-parameter
family of maximally entangled states [21], and it can be easily
estimated in experiments [22].

In what follows states with g2 > 1/2 are referred to
as slightly entangled, states with g2 < 1/2 are referred to
as highly entangled, and states with g2 = 1/2 are referred
to as shared quantum states. In this paper we show how to
calculate the maximal product overlap of an arbitrary W state

[11]. The method is to establish a one-to-one correspondence
between highly entangled W states and their nearest product
states.

Consider first generalized Greenberger-Horne-Zeilinger
(GHZ) states [23], that is, states that can be written |GHZ〉 =
a|0 · · · 0〉 + b|1 · · · 1〉 in some product basis. Such states
are fragile under local decoherence, that is, they become
disentangled by the loss of any one party, and they are not
highly entangled in the sense defined above. The geometric
measure of these states is computed easily since the maximal
overlap simply takes the value of the modulus of the larger
coefficient |a| or |b| [24]. Accordingly, the nearest separable
state is the product state with the larger coefficient. Thus many
generalized GHZ states with different maximal overlaps can
have the same nearest product state.

Consider now generalized W states [25], which can be
written

|Wn〉 = c1|100 · · · 0〉 + c2|010 · · · 0〉 + · · · + cn|00 · · · 01〉.
(1)

Without loss of generality, we consider only the case of positive
parameters ck , since the phases of the coefficients ck can be
eliminated by redefinitions of local states |1k〉, k = 1,2, . . . , n.
The states (1) are robust against decoherence [26], that is, loss
of any n − 2 parties still leaves them in a bipartite entangled
state. Surprisingly, if the state is slightly entangled, then we
have the same situation as for generalized GHZ states: the
maximal overlap is the largest coefficient and, as before,
many states can have the same nearest product state [27].
However, the situation is changed drastically when the state
is highly entangled. The calculation of the maximal overlap
in this case is a very difficult problem, and the maximization
has been performed only for relatively simple systems
[9,14,16,24,27–30].

On the other hand, different highly entangled W states
have different nearest product states. This makes it possible
to map the W state to its nearest product state and quickly
obtain its geometric measure of entanglement. More precisely,
we construct two bijections. The first one creates a map
between highly entangled n-qubit W states and n-dimensional
unit vectors x. The second one does the same between
n-dimensional unit vectors and n-part product states. Thus
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we obtain a double map, or duality, as follows:

|Wn〉 ↔ x ↔ |u1〉 ⊗ |u2〉 ⊗ · · · ⊗ |un〉. (2)

The main advantage of the map is that, if one knows any of
the three vectors, then one instantly finds the other two.

II. CLASSIFYING MAP

Now we prove a theorem that provides a basis for the
map.

Theorem 1. Let |Wn〉 be an arbitrary W state (1) with non-
negative real coefficients ci , and let |u1〉 ⊗ |u2〉 ⊗ · · · ⊗ |un〉
be its nearest product state. Then the phase of |uk〉 can be
chosen so that

|uk〉= sin θk|0〉+ cos θk|1〉, 0 � θk � π

2
, k = 1,2, . . . , n,

where

cos2 θ1 + cos2 θ2 + · · · + cos2 θn = 1. (3)

Proof. The nearest product state is a stationary point for
the overlap with |Wn〉, so the states |uk〉 satisfy the nonlinear
eigenvalue equations [9,16,17]

〈u1u2 · · · ûk · · · un|Wn〉 = g|uk〉, k = 1,2, . . . , n, (4)

where the caret means exclusion. We can choose the phase
of |uk〉 so that |uk〉 = sin θk|0〉 + eiφk cos θk|1〉, and then (4)
gives the pair of equations

ck

∏
j �=k

sin θj = geiφk cos θk, (5a)

∑
l �=k

e−iφl cl cos θl

∏
j �=k,l

sin θj = g sin θk. (5b)

Equation (5a) shows that geiφk is real, so φk = − arg(g)
is independent of k. Then the modulus of the overlap
|〈u1 · · · un|Wn〉| is independent of φ, so we can assume that
φ = 0. Now multiplication of Eq. (5b) by sin θk and use
of Eq. (5a) gives Eq. (3). Thus the angles cos θk define a
unit n-dimensional Euclidean vector x. We can also define
a length r as follows. From Eq. (5a) it follows that the ratio
sin 2θk/ck does not depend on k. If this ratio is nonzero, we can
define

1

r
≡ sin 2θ1

c1
= sin 2θ2

c2
= · · · = sin 2θn

cn

. (6)

III. HIGHLY ENTANGLED W STATES

Equations (5) admit a trivial solution sin 2θk = 0, k =
1,2, . . . , n and a special solution with nonzero values of all
sines. The trivial solution gives the largest coefficient of |Wn〉
for the maximal overlap and is valid for slightly entangled
states. We consider them later and now focus on the special
solutions. From Eq. (6) it follows that

cos2 θk = 1

2

⎛⎝1 ±
√

1 − c2
k

r2

⎞⎠ , k = 1,2, . . . , n. (7)

The plus sign means that cos 2θk > 0. Then from Eq. (3) it
follows that this is possible for at most one angle; specifically,

we prove that, if cos 2θk > 0 for some k, then ck is the largest
coefficient in Eq. (1). Suppose cos 2θk > 0 but ck is not the
largest coefficient and there exists a greater coefficient, say
cl . Then from Eq. (6) it follows that sin 2θl > sin 2θk > 0 and
consequently | cos 2θl| < | cos 2θk|. Now we rewrite Eq. (3) as
follows:

− cos 2θ1 − cos 2θ2 − · · · − cos 2θn = n − 2. (8)

From | cos 2θl| < | cos 2θk| and cos 2θk > 0 it follows that
− cos 2θk − cos 2θl < 0, which is in contradiction with Eq. (8).
Thus ck must be the largest coefficient.

Without loss of generality, we assume that 0 � c1 � · · · �
cn. Then in (7) we must take the − sign for k = 1, . . . , n − 1
and (3) becomes

1 − c2
1

r2
+ · · · + 1 − c2

n−1

r2
± 1 − c2

n

r2
= n − 2. (9)

We will denote the left-hand sides of these equations as f±(r).
We also use f0(r) to denote this expression without the last
term. The function r(c1,c2, . . . ,cn) defined by f+(r) = n − 2
is a completely symmetric function of the state parameters
ck . In contrast, the function defined by f−(r) = n − 2 is an
asymmetric function since its dependence on the maximal
coefficient cn is different. Thus in Eq. (9) the upper and lower
signs describe symmetric and asymmetric entangled regions
of highly entangled states, respectively.

For highly entangled states, Eqs. (9)± uniquely define r as
a function of the state parameters ck . More precisely, we have
the following theorem.

Theorem 2. There are two critical values r1 and r2 of the
largest coefficient cn, that is, functions of c1, . . . ,cn−1 such
that

1. if cn � r1, there is a unique solution of (9)+ and no
solution of (9)−;

2. if cn = r1, both (9)+ and (9)− have a unique solution,
the same for both;

3. if r1 < cn � r2, there is no solution of (9)+ and a unique
solution of (9)−;

4. if cn > r2, neither (9)+ nor (9)− has a solution. In this
case the state |Wn〉 is slightly entangled.

The value r1 is the solution of f0(r1) = n − 2, which exists
and is unique since f0(cn−1) < n − 2 and f0(r) → n − 1
monotonically as r → ∞; and r2 is defined by

r2
2 = c2

1 + · · · + c2
n−1. (10)

Then r2 � r1, for f0(r2) � n − 2 = f0(r1) using
√

x � x

for 0 � x � 1. Since f0 is an increasing function of r, it
follows that r2 � r1. Now the theorem follows from the
following properties of the functions f±(r) (f ′

− is the derivative
of f−):

1. f0 and f+ are monotonically increasing functions of r .
2. f+(r) → n as r → ∞.
3. If cn � r1, f+(cn) = f0(cn) � f0(r1) = n − 2.
4. If cn � r1, then f+(r) � n − 2 for all r > r1.
5. If cn < r1, then f−(cn) < n − 2.
6. If cn > r1, then f−(cn) > n − 2.
7. If cn < r2, then f−(r) < n − 2 for large r .
8. If cn > r2 then f−(r) > n − 2 for large r .
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FIG. 1. (Color online) Behavior of the functions f± for five-qubit
W states. The functions f+(r) (dotted line) and f−(r) (solid line) are
plotted against r in the four cases cn < r1, cn = r1, r1 < cn < r2, and
cn = r2.

9. f ′
−(cn + ε) < 0 for small ε.

10. If cn > r2, then f ′
−(r) < 0 for all r � cn.

These properties are illustrated in Fig. 1.

IV. GEOMETRIC MEASURE

We can now identify the nearest product state, and the
largest product state overlap g(|Wwn〉), for any W state |Wn〉,
as follows.

Theorem 3. If cn � 1/2, the state |Wn〉 defined by (1) is
slightly entangled. Its nearest product state is |0 · · · 01〉, with
overlap g(|Wn〉) = cn.

If cn � 1/2, the state |Wn〉 is highly entangled and has
nearest product state

|u1〉 · · · |un〉 where |uk〉 = sin θk|0〉 + |eiφ cos θk|1〉, (11)

with which its overlap is

g = 2r sin θ1 sin θ2 · · · sin θn. (12)

Here r is the solution of (9)±, whose existence and uniqueness
are guaranteed by Theorem 2; the phase φ is arbitrary; and
θk is given by (7) with the − sign for k = 1, . . . , n − 1,
the − sign for k = n if r satisfies (9)+, and the + sign if r

satisfies (9)−.
Proof. The nonlinear eigenvalue equations (4) always have

n solutions

g = ck, |ui〉 =
{ |0〉 if i �= k,

|1〉 if i = k,
k = 1, . . . , n.

If cn � 2, that is, in case (4) of Theorem 2, there are no other
stationary values, so the largest overlap g(|Wn〉) equals the
largest coefficient cn, the corresponding product state being
|0 · · · 01〉.

If cn < 1/2 there is another stationary value given by
(12). We will now show that this is larger than any of the
trivial stationary values ck . We use the following inequality:
If y1, . . . ,yn are real numbers lying between 0 and 1 and
satisfying y1 + · · · + yn � 1, then

(1 − y1)(1 − y2) · · · (1 − yn) � 1−y1−y2− · · · − yn. (13)

This is readily proved by induction. We can apply (13) to n − 1
terms of Eq. (3) to get

(1 − cos2 θ1) · · · (1 − cos2 θn−1)

� 1 − cos2 θ1 − · · · − cos2 θn−1

or

sin2 θ1 sin2 θ2 sin2 θn−1 � cos2 θn. (14)

Now from Eq. (5a) it follows that g2 � c2
n. Thus g is

the maximal product overlap, and the nearest product state
is |u1〉 · · · |un〉.

Next we prove that, if |Wn〉 is normalized, then g2 < 1/2.
For this we need another inequality: If y1, . . . ,yn are real
numbers lying between 0 and 1, and satisfying y1 + · · · + yn =
n − 1, then

y1 + · · · + yn � y2
1 + · · · + y2

n + 2y1y2 · · · yn. (15)

This can also be proved by induction.
From (6), and using c2

1 + · · · + c2
n = 1, we find

r2 = 1

sin2 2θ1 + · · · + sin2 2θn

. (16)

Hence (12) gives

g2 = y1y2 . . . yn

y1(1 − y1) + · · · yn(1 − yn)
(17)

where yk = sin2 θk . But y1 + · · · + yn = n − 1, so the inequal-
ity (15) applies, and gives g2 � 1/2.

Finally, we summarize the correspondence between highly
entangled W states, their nearest product states, and unit
vectors in Rn.

Theorem 4. There is a 1:1 correspondence between highly
entangled states |Wn〉 defined by (1), their nearest product
states with real non-negative coefficients, and unit vectors x ∈
Rn with 0 < xk < 1/

√
2 (k = 1, . . . ,n − 1), 0 < xn < 1.

Proof. By Theorem 3, |Wn〉 is highly entangled if and
only if cn < 1/2. If this is the case, Theorem II and (7)
show that its nearest product state is of the form (11), where
x = (cos θ1, . . . , cos θn) is a unit vector in Rn in the region
stated. The angles θk are given in terms of the coefficients ck

by (6), in which r is a function of the coefficients which, by
Theorem III, is uniquely defined. The nearest product states
|u1〉|u2〉 · · · |un〉 are determined by these angles, up to a phase
φ, by |uk〉 = sin θk|0〉 + eiφ cos θk|1〉, so there is only one
nearest product state with real non-negative coefficients, and
only one unit vector x, for each highly entangled state |Wn〉.
Conversely, given a unit vector x = (cos θ1, . . . , cos θn), the
quantity r is determined by (16), and then the coefficients
c1, . . . ,cn are determined by (6). Thus the correspondences
(2) are bijections.

The equations (9)± cannot always be explicitly solved to
give analytic expressions for r in terms of the coefficients ck .
However, in some cases, including all states for n = 3, explicit
solutions can be obtained. Then the angles θk can be calculated
from (6), and Eq. (12) gives a formula for the maximal product
overlap g(|Wn〉). This formula is valid unless any of the angles
θk vanishes, and restores all known results for the maximal

052319-3



TAMARYAN, SUDBERY, AND TAMARYAN PHYSICAL REVIEW A 81, 052319 (2010)

overlap of highly entangled W states. When n = 3, it coincides
with the formula (31) in Ref. [9]. When c1 = c2 = · · · = cn

it coincides with the formula (52) in Ref. [24], and when
n = 4 and c3 = c4 it coincides with the formula (37) derived
in Ref. [27].

When max(c2
1,c

2
2, . . . ,c

2
n) = r2

2 = 1/2, the two expressions
for g(|Wn〉) given in Theorem IV coincide; these states are
shared quantum states. The nearest product states and maximal
overlaps of shared states are given by the first case of
Theorem IV, but also they appear as asymptotic limits of the
second case. Indeed, at the limit θn → 0, we have

lim
θn→0

2r sin θn → cn, lim
θn→0

2r cos θk → ck, k �= n. (18)

Thus the angle θn vanishes and the length of the vector r goes
to infinity, but their product has a finite limit. Substituting these
limits into Eq. (3), one obtains c2

n → r2
2 . Therefore entangled

regions of highly and slightly entangled states are separated
by the surface c2

n = 1/2; for states on the surface, r → ∞. All
of these states can be used as a quantum channel for perfect
teleportation and superdense coding [13].

V. SUMMARY

We have constructed correspondences among W states,
n-dimensional unit vectors, and separable pure states. The
map reveals two critical values for quantum state parameters.
The first critical value separates symmetric and asymmetric
entangled regions of highly entangled states, while the second
one separates highly and slightly entangled states. The method
gives an explicit expressions for the geometric measure when
the state allows analytical solutions; otherwise it expresses the
entanglement as an implicit function of state parameters.

It should be noted that the bijection between W states
and n-dimensional unit vectors is not related directly to the
geometric measure of entanglement. Therefore it is possible
to extend the method to other entanglement measures. To this
end one creates an appropriate bijection between unit vectors
and optimization points of an entanglement measure one wants
to compute. This work is in progress.
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