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ON A p-ADIC ANALOGUE OF

k-PLE RIEMANN ZETA FUNCTION

Daekil Park and Jin-Woo Son

Abstract. In this paper, we construct a p-adic analogue of multiple
Riemann zeta values and express their values at non-positive integers. In
particular, we obtain a new congruence of the higher order Frobenius-

Euler numbers and the Kummer congruences for the Bernoulli numbers
as a corollary.

1. Introduction

Let ε be a root of unity of order relatively prime with p and ε ̸= 1. We
consider the Frobenius-Euler numbers Hm(ε) defined by

(1.1)
ε− 1

εet − 1
=

∞∑
m=0

Hm(ε)
tm

m!
,

which can be written symbolically as eH(ε)t = (ε− 1)/(εet − 1), interpreted to
mean that (H(ε))m must be replaced by Hm(ε) when expand on the left (cf.
[9, 13]). This relation can also be written εe(H(ε)+1)t − eH(ε)t = ε− 1, or, if we
equate powers of t,

(1.2) H0(ε) = 1, ε(H(ε) + 1)m −Hm(ε) = 0 if m ≥ 1,

where again we must first expand and then replace (H(ε))i by Hi(ε). We note
that

(1.3) Hm(−1) = Em,

where Em denotes the so-called Euler numbers (cf. [8, 9]). The Frobenius-Euler
polynomials Hm(x, ε) are defined by

(1.4) Hm(x, ε) =
m∑
i=0

(
m

i

)
xm−iHi(ε).
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We easily see that

(1.5) Hm−1(−1) =
2

m
(1− 2m)Bm, m ≥ 1.

Here the Bernoulli numbers are defined by

(1.6)
t

et − 1
=

∞∑
m=0

Bm
tm

m!
.

The Bernoulli polynomials Bm(x) are also defined by Bm(x)=
∑m

i=0

(
m
i

)
xm−iBi.

Among many properties of Bernoulli numbers the Kummer congruences for
Bernoulli numbers are widely known [2, 5, 19, 20]. Kummer congruences of
Bernoulli numbers were first known to us by Kummer [12] a century ago,
but their interpretation in terms of p-adic interpolation of the Riemann zeta
function was only discovered in 1964 by Kubota and Leopoldt [11]. In 1910,
Frobenius [4] gave a generalization of the Kummer congruence. Vandiver [19]
obtained the complementary congruences, which were extended by Carlitz [2]
in many directions. Congruences for higher order Bernoulli numbers have been
studied by many authors, Adelberg [1], Carlitz [3], Howard [5], etc.

In [13], Osipov’s congruences are the generalization of the Kummer congru-
ences for ordinary Bernoulli numbers. He also obtained the Witt’s formula of
the numbers Hm(ε), which of the similar kinds are given in [6, 8, 10, 11, 14,
15, 16, 17, 18]. Recently, Kim and Lee [9] obtained some interesting identi-
ties related to the Frobenius-Euler polynomials Hm(x, ε) by using the ordinary
fermionic p-adic invariant integral on Zp.

In this paper we construct a p-adic analogue of k-ple Riemann zeta func-
tion and express their values at non-positive integers. Also, we obtain a new
congruence of the higher order Frobenius-Euler numbers and the Kummer con-
gruences for the Bernoulli numbers as a corollary.

2. The values of k-ple Riemann zeta function at non-positive
integers

Let ε be roots of unity of order relatively prime with p and ε ̸= 1. Then the
higher order Frobenius-Euler numbers are defined by means of the following
generating function

(2.1) gε(t) =

(
1− ε

1− εet

)k

=
∞∑

m=0

H(k)
m (ε)

tm

m!
.

The higher order Frobenius-Euler polynomials are also defined by means of the
following generating function

(2.2) gε(x, t) = gε(t)e
xt =

∞∑
m=0

H(k)
m (x, ε)

tm

m!
.
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Setting x = 0 in (2.2), H
(k)
m (0, ε) = H

(k)
m (ε). If k = 1, it is less well known that

the explicit representations for the Frobenius-Euler numbers and polynomials,

complementing those given in [8, 9, 14]. Setting ε = −1 in (2.2), H
(k)
m (x,−1) =

E
(k)
m (x) are called the higher order Euler polynomials; setting k = 1 and ε = −1

in (2.2), H
(1)
m (x,−1) = Em(x) are called the classical Euler polynomials.

Let x be a positive real number and let |ε| ≤ 1. The k-ple Riemann zeta
function ζk(s, x, ε) is defined by

(2.3) ζk(s, x, ε) =
∞∑

n1,...,nk=0

εn1+···+nk

(x+ n1 + · · ·+ nk)s
.

In practice, the k-ple Riemann zeta function ζk(s, x, ε) for s = 0,−1,−2, . . .
are of particular interest. We shall discuss these matters as follows.

The k-ple Riemann zeta function ζk(s, x, ε) is expressed as an integral,

(2.4) Γ(s)ζk(s, x, ε) =

∫ ∞

0

e−xtts−1

(1− εe−t)k
dt,

where Γ(s) is the gamma function, which satisfies Γ(s + 1) = sΓ(s),Γ(1) = 1,
so that, in particular, Γ(m) = (m − 1)! for positive integers m. Let C denote
the contour which starts from +∞, runs on the real axis, encircling the origin
once counter-clockwise on the circle of small radius with the center at 0, runs
the real axis and returns to +∞. Since∫

C

e−xzzs−1

(1− εe−z)k
dz = (e2πis − 1)

∫ ∞

0

e−xtts−1

(1− εe−t)k
dt,

we have

(2.5) ζk(s, x, ε) =
e−πisΓ(1− s)

2πi

∫
C

e−xzzs−1

(1− εe−z)k
dz.

This is the main virtue to obtain a contour integral representation for an ana-
lytic function. In particular, we see that ζk(s, x, ε) can be continued analytically
to the whole s-plane (cf. [16, 20]). Furthermore, by (2.2) and (2.4), sufficiently
large N we have

(2.6)

(1− ε)kζk(s, x, ε) =
N∑

m=0

H
(k)
m (x, ε)

m!Γ(s)

(−1)m

s+m
+

1

Γ(s)
HN (s)

+
1

Γ(s)

∫ ∞

1

ts−1gε(x,−t)dt,

where HN (s) is entire. For an integer m ≥ 0, we have

(2.7) (1− ε)k lim
s→−m

(s+m)Γ(s)ζk(s, x, ε) = H(k)
m (x, ε)

(−1)m

m!
.

If m ≥ 0, we have lims→−m(s + m)Γ(s) = (−1)mm! and thus we obtain the
following lemma.
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Lemma 2.1. For m ≥ 0 and ε ̸= 1,

ζk(−m,x, ε) =
H

(k)
m (x, ε)

(1− ε)k
.

Define

(2.8) ζ̃k(s, x, ε) =
∞∑

n1,...,nk=0
p∤(n1+···+nk)

εn1+···+nk

(x+ n1 + · · ·+ nk)s
.

For the special case of ζ̃k(s, x, ε), i.e., when s = 0,−1,−2, . . . , it is clear that
from (2.3) and (2.8)

ζ̃k(−m,x, ε) = ζk(−m,x, ε)−
p−1∑

a1,...,ak=0
p∤|a|

∞∑
n1,...,nk=0

ε|a|+p(n1+···+nk)

(x+ |a|+ p(n1 + · · ·+ nk))−m

= ζk(−m,x, ε)− pm
p−1∑

a1,...,ak=0
p∤|a|

ε|a|ζk

(
−m,

x+ |a|
p

, εp
)
,

where m ≥ 0 and |a| = a1 + · · ·+ ak (cf. [10]). It follows from this and Lemma
2.1 that

H(k)
m (x, ε)− pm

(
1

[p]ε

)k p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
x+ |a|

p
, εp
)

= (1− ε)k

ζk(−m,x, ε)− pm
p−1∑

a1,...,ak=0
p∤|a|

ε|a|ζk

(
−m,

x+ |a|
p

, εp
)

= (1− ε)k ζ̃k(−m,x, ε).

Lemma 2.2. Let m ≥ 0 and |a| = a1 + · · ·+ ak. Then

ζ̃k(−m,x, ε) =
1

(1− ε)k

H(k)
m (x, ε)− pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
x+ |a|

p
, εp
) .

3. p-adic k-ple Riemann zeta function and Kummer-type
congruences

In this section, let p be an odd prime number. The symbol Zp,Qp and Cp

denote the rings of p-adic integers, the field of p-adic numbers and the field
of p-adic completion of the algebraic closure of Qp, respectively. The p-adic
absolute value in Cp is normalized in such way that |p|p = 1/p.
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We denote two particular subrings of Cp in the following manner

op = {s ∈ Cp | |s|p ≤ 1}, mp = {s ∈ Cp | |s|p < 1}.

Then mp is a maximal ideal of op. If s ∈ Cp such that |s|p ≤ |p|rp, where
r ∈ Q, then s ∈ prop, and so we shall also write this as s ≡ 0 (mod prop) (cf.
[6, 10, 20]).

Note that the two fields C and Cp are algebraically isomorphic, and any one
of the two can be embedded in the other.

We begin with the following result.

Lemma 3.1. Let εr = 1, ε ̸= 1 and (r, p) = 1. Then there exists h such that
r | (ph − 1), and

H0(ε) = 1, lim
n→∞

phn−1∑
a=0

amεa = Hm(ε), m ≥ 1.

Proof. Put h = φ(r), where φ is the Euler function. Then pφ(r) ≡ 1 (mod r)
since (r, p) = 1. This gives pφ(r)n ≡ 1 (mod r), n ≥ 0 and so r | (pφ(r)n − 1).

That is εp
hn

= ε. Thus we have

∞∑
m=0

 lim
n→∞

phn−1∑
a=0

amεa

 tm

m!
= lim

n→∞

phn−1∑
a=0

eatεa = lim
n→∞

εp
hn

etp
hn − 1

εet − 1

=
ε− 1

εet − 1
=

∞∑
m=0

Hm(ε)
tm

m!
,

where |t|p < p−1/(p−1). The result follows at once. □

Let r be a positive integer prime to p, and ε ∈ Cp a r-th root of unity different
from 1. Let f : Zk

p → Cp be any continuous function and let a = (a1, . . . , ak)

be a variable on Zk
p. We define the p-adic integration of f on Zk

p, if it exists, by
the formula

(3.1)

∫
Zk
p

f(a)dµε(a) = lim
n1→∞

···
nk→∞

phn1−1∑
a1=0

· · ·
phnk−1∑
ak=0

f(a1, . . . , ak)ε
a1 · · · εak ,

where h is a positive integer such that r | (ph − 1) (cf. [13]).

Lemma 3.2. For integer m ≥ 0 and x ∈ Cp,

H(k)
m (x, ε) =

∫
Zk
p

(x+ |a|)mdµε(a),

where a = (a1, . . . , ak) ∈ Zk
p and |a| = a1 + · · ·+ an.
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Proof. Note that∫
Zk
p

et(x+|a|)dµε(a) = lim
n1→∞

···
nk→∞

phn1−1∑
a1=0

· · ·
phnk−1∑
ak=0

et(x+a1+···+ak)εa1 · · · εak

= etx
k∏

i=1

(
lim

ni→∞

1− εp
hni

etp
hni

1− εet

)
= gε(x, t)

(cf. [10]). Taking the coefficient of the terms tm/m! in the above formula, we
obtain the lemma. □

Put |a| = a1 + · · ·+ an. Let a = (a1, . . . , ak) be a variable on Zk
p and let Z×

p

be the group of p-adic units. It is easy to see that

(3.2)

∫
Zk
p

|a|∈Z×
p

(x+|a|)mdµε(a) =

∫
Zk
p

(x+|a|)mdµε(a)−
∫

Zk
p

|a|∈pZp

(x+|a|)mdµε(a)

(cf. [10]). We use the notation

[n]ε =
1− εn

1− ε
.

Now, we need to compute (3.2). The following lemma deals with the second
integral in (3.2).

Lemma 3.3. For integer m ≥ 0 and x ∈ Cp,∫
Zk
p

|a|∈pZp

(x+ |a|)mdµε(a) =
pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
x+ |a|

p
, εp
)
,

where a = (a1, . . . , ak) ∈ Zk
p and |a| = a1 + · · ·+ an.

Proof. Note that∫
Zk
p

|a|∈pZp

et(x+|a|)dµε(a)

= etx lim
n1→∞

· · · lim
nk→∞

p−1∑
a1,...,ak=0

p∤|a|

phn1−1−1∑
b1=0

· · ·
phnk−1−1∑

bk=0

k∏
i=1

(εet)ai+pbi

= etx lim
n1→∞

· · · lim
nk→∞

p−1∑
a1,...,ak=0

p∤|a|

k∏
i=1

(εat)ai

phn1−1−1∑
b1=0

· · ·
phnk−1−1∑

b1=0

k∏
i=1

(εet)pbi

=

p−1∑
a1,...,ak=0

p∤|a|

εa1+···+aket(x+a1+···+ak) lim
n1→∞

· · · lim
nk→∞

k∏
i=1

(
1− εetp

hni

1− εpetp

)
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=
1

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

εa1+···+akgεp(tp)e
t(x+a1+···+ak).

Taking the coefficient of the terms tm/m! in the above formula, we obtain the
lemma. □

Lemma 3.4. For integer m ≥ 0 and x ∈ Cp,∫
Zk
p

|a|∈Z×
p

(x+ |a|)mdµε(a) = H(k)
m (x, ε)− pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
x+ |a|

p
, εp
)
,

where a = (a1, . . . , ak) ∈ Zk
p and |a| = a1 + · · ·+ an.

Proof. By (3.2), Lemmas 3.2 and 3.3 we obtain the desired identity. □

Lemma 3.5. Let x ∈ mp. The function

−m 7−→ H(k)
m (x, ε)− pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
x+ |a|

p
, εp
)

admits a continuation from the dense subset {0,−1, . . .} ⊂ Zp to a continuous
function

ζp,k(·, x, ε) : Zp → Cp

and

ζp,k(s, x, ε) =

∫
Zk
p

|a|∈Z×
p

(x+ |a|)−sdµε(a),

where a = (a1, . . . , ak) ∈ Zk
p and |a| = a1 + · · ·+ an.

Proof. Let |a| ∈ Z×
p , x ∈ mp and let m ≡ m′ (mod (p− 1)pn). It is easy to see

that (x+ |a|)m ≡ (x+ |a|)m′
(mod pn+1op). Therefore we have

(3.3)

∫
Zk
p

|a|∈Z×
p

(x+ |a|)mdµε(a) ≡
∫

Zk
p

|a|∈Z×
p

(x+ |a|)m
′
dµε(a) (mod pn+1op)

and they would also belong to a continuous p-adic function on Zp. The result
now follows from Lemma 3.4. □

If t ∈ Cp such that |t|p ≤ 1, then for any a ∈ Z×
p , a + pt ≡ a (mod pop).

Thus we define

ω(a+ pt) = ω(a)

for these values of t and the Teichmüller character ω. We also define

⟨a+ pt⟩ = ω−1(a)(a+ pt)
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for t ∈ Cp such that |t|p ≤ 1 (cf. [16, 20]). We define a function ζp,k(s, t, ε) on
Zp by

(3.4) ζp,k(s, t, ε) =

∫
Zk
p

|a|∈Z×
p

⟨|a|+ pt⟩−sdµε(a),

where |a| = a1 + · · ·+ ak and t ∈ Cp such that |t|p ≤ 1.

Theorem 3.6 (p-adic k-ple Riemann zeta function). For t ∈ Cp such that
|t|p ≤ 1, the function ζp,k(s, t, ε) is analytic on Zp and

ζp,k(s, t, ε) =
∞∑

n=0

(
−s

n

)∫
Zk
p

|a|∈Z×
p

(⟨|a|+ pt⟩ − 1)ndµε(a)

holds, which interpolates (1− ε)k ζ̃k(−m, pt, ε) in the sense that

ζp,k(−m, t, ε) = H(k)
m (pt, ε)− pm

(
1

[p]ε

)k p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
t+

|a|
p
, εp
)

for integers m ≥ 0 with m ≡ 0 (mod p− 1) and |a| = a1 + · · ·+ ak.

Proof. From Lemma 3.5, ζp,k(−s, t, ε) can be written uniquely as the Mahler
expansion (cf. [20])

ζp,k(−s, t, ε) =

∞∑
n=0

an

(
s

n

)
, an =

∫
Zk
p

|a|∈Z×
p

(⟨|a|+ pt⟩ − 1)ndµε(a)

and

|an|p =

∣∣∣∣∣∣
∫

Zk
p

|a|∈Z×
p

(⟨|a|+ pt⟩ − 1)ndµε(a)

∣∣∣∣∣∣
p

≤ sup
a∈Zk

p

|a|∈Z×
p

|⟨|a|+ pt⟩ − 1|np

= p−n → 0 as n → ∞.

Note that the coefficients an are given by

an = ∆nζp,k(−s, t, ε)|s=0,

where ∆f(x) = f(x+ 1)− f(x). Moreover we have

1

n!
an → 0 as n → ∞,

so that ζp,k(s, t, ε) is analytic. Therefore the result follows from Lemma 2.2
and Lemma 3.5. □

From Lemma 3.4 and (3.3), we also have:
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Corollary 3.7. Let m ≡ m′ (mod pn(p−1)) and let t ∈ Cp such that |t|p ≤ 1.
Then

H(k)
m (pt, ε)− pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H(k)
m

(
t+

|a|
p
, εp
)

≡ H
(k)
m′ (pt, ε)−

pm

[p]kε

p−1∑
a1,...,ak=0

p∤|a|

ε|a|H
(k)
m′

(
t+

|a|
p
, εp
)

(mod pn+1op).

In particular if t = 0 and k = 1, we an rewrite Corollary 3.7 as

(3.5) Hm(ε)− pm

[p]ε
Hm (εp) ≡ Hm′(ε)− pm

′

[p]ε
Hm′ (εp) (mod pn+1op),

which is the same as (23) in [13]. If ε = −1 in (3.5), then we have the following
corollary.

Corollary 3.8. If m ≡ m′ (mod pn(p− 1)), then

(1− pm)Hm(−1) ≡ (1− pm
′
)Hm′(−1) (mod pn+1Zp).

By (1.5) and Corollary 3.8, it is easy to see that

(3.6) (1−pm)(1−2m+1)
Bm+1

m+ 1
≡ (1−pm

′
)(1−2m

′+1)
Bm′+1

m′ + 1
(mod pn+1Zp).

If we further assume that m+1 ̸≡ 0 (mod p−1), then we have 1/(1−2m+1) ≡
1/(1 − 2m

′+1) (mod pn+1Zp). Multiplying these two congruences, we obtain
the Kummer congruences for the Bernoulli numbers (see [13, 20]):

Corollary 3.9 (Kummer congruences). If m+1 ̸≡ 0 (mod p−1) and if m ≡ m′

(mod pn(p− 1)), then

(1− pm)
Bm+1

m+ 1
≡ (1− pm

′
)
Bm′+1

m′ + 1
(mod pn+1Zp).
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