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ON A p-ADIC ANALOGUE OF
k-PLE RIEMANN ZETA FUNCTION

DAEKIL PARK AND JIN-W0OO SON

ABSTRACT. In this paper, we construct a p-adic analogue of multiple
Riemann zeta values and express their values at non-positive integers. In
particular, we obtain a new congruence of the higher order Frobenius-
Euler numbers and the Kummer congruences for the Bernoulli numbers
as a corollary.

1. Introduction

Let € be a root of unity of order relatively prime with p and ¢ # 1. We
consider the Frobenius-Euler numbers H,,(g) defined by

(1.1) el EOO Ho(e)
. == m\& )
et — 1 = "ml

which can be written symbolically as e” () = (¢ —1)/(ee! — 1), interpreted to
mean that (H(e))™ must be replaced by H,,(¢) when expand on the left (cf.
[9, 13]). This relation can also be written ee(/()+1t _H (&t — ¢ 1 or, if we
equate powers of t,

(1.2) Ho(e) =1, e(H(e)+1)" —Hpne)=0 ifm>1,

where again we must first expand and then replace (H(¢))* by H;(g). We note
that
(1.3) Hp(~1) = By,

where E,,, denotes the so-called Euler numbers (cf. [8, 9]). The Frobenius-Euler
polynomials H,,(x,¢) are defined by

(1.4) Hy(z,¢) = i (m) 2™ (2).
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1=0

Received September 27, 2010.

2010 Mathematics Subject Classification. 11B68, 11S80.

Key words and phrases. p-adic analogues, higher order Frobenius-Euler numbers, k-ple
zeta function, Kummer-type congruences.

(©2012 The Korean Mathematical Society

165



166 DAEKIL PARK AND JIN-WOO SON

We easily see that

2
(1.5) Hyoi(=1) = —(1=2™)B,, m>1.

Here the Bernoulli numbers are defined by
t = tm
et—1 E:o Bmﬁ‘

The Bernoulli polynomials B, (z) are also defined by B, (z)=Y"1", ()z™ " B;.

Among many properties of Bernoulli numbers the Kummer congruences for
Bernoulli numbers are widely known [2, 5, 19, 20]. Kummer congruences of
Bernoulli numbers were first known to us by Kummer [12] a century ago,
but their interpretation in terms of p-adic interpolation of the Riemann zeta
function was only discovered in 1964 by Kubota and Leopoldt [11]. In 1910,
Frobenius [4] gave a generalization of the Kummer congruence. Vandiver [19]
obtained the complementary congruences, which were extended by Carlitz [2]
in many directions. Congruences for higher order Bernoulli numbers have been
studied by many authors, Adelberg [1], Carlitz [3], Howard [5], etc.

In [13], Osipov’s congruences are the generalization of the Kummer congru-
ences for ordinary Bernoulli numbers. He also obtained the Witt’s formula of
the numbers H,,(¢), which of the similar kinds are given in [6, 8, 10, 11, 14,
15, 16, 17, 18]. Recently, Kim and Lee [9] obtained some interesting identi-
ties related to the Frobenius-Euler polynomials H,,(z,¢) by using the ordinary
fermionic p-adic invariant integral on Z,.

In this paper we construct a p-adic analogue of k-ple Riemann zeta func-
tion and express their values at non-positive integers. Also, we obtain a new
congruence of the higher order Frobenius-Euler numbers and the Kummer con-
gruences for the Bernoulli numbers as a corollary.

(1.6)

2. The values of k-ple Riemann zeta function at non-positive
integers

Let ¢ be roots of unity of order relatively prime with p and € # 1. Then the
higher order Frobenius-Euler numbers are defined by means of the following
generating function

k e m
21) 0= (1=) =L HPE

1 — eet m!

m=0
The higher order Frobenius-Euler polynomials are also defined by means of the
following generating function

oo

(2.2) ge(x,t) = ge(t)e™ = Y Hﬁ)(x’e)%'

m=0
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Setting x = 0 in (2.2), =Y (0,e) = Hr(ff)(e). If £k =1, it is less well known that
the explicit representations for the Frobenius-Euler numbers and polynomials,
complementing those given in [8, 9, 14]. Setting ¢ = —1 in (2.2), Hy(,]f)(x, -1) =
7(7}5 ) (z) are called the higher order Euler polynomials; setting k =1 and e = —1
n (2.2), H,%)(x, —1) = E,,,(x) are called the classical Euler polynomials.
Let x be a positive real number and let || < 1. The k-ple Riemann zeta
function (i (s, z,¢€) is defined by

oo gt tng
(2.3) Cr(s,z,e) = Z (x+mn1+ - +ng)s

nl,...,nkzo

In practice, the k-ple Riemann zeta function (x(s,z,¢) for s =0,—1,-2,...
are of particular interest. We shall discuss these matters as follows.
The k-ple Riemann zeta function (i (s, z,€) is expressed as an integral,

oo
(2.4) [(s)Ck(s,z,e) = /0 0= )
where I'(s) is the gamma function, which satisfies T'(s + 1) = sI'(s),T'(1) = 1,
so that, in particular, I'(m) = (m — 1)! for positive integers m. Let C' denote
the contour which starts from +o0, runs on the real axis, encircling the origin
once counter-clockwise on the circle of small radius with the center at 0, runs
the real axis and returns to 4+o00. Since

efxzzsfl ) e’} efzrttsfl
/ == Ee_z)"”'dz = (emis — 1)/ 0k Ee_t)kdt’
C 0
we have

e—ﬂ'isr(l _ S) e—wzzs—l
2.5 ,X,€) = - d
(2:5) Ck(s,2,) 21 /C (1 —ee2)k *
This is the main virtue to obtain a contour integral representation for an ana-
lytic function. In particular, we see that (i (s, x,€) can be continued analytically
to the whole s-plane (cf. [16, 20]). Furthermore, by (2.2) and (2.4), sufficiently
large N we have

e—a:tts—l
dt,

H (z,e) (-1)m 1
mll(s) s+m + I'(s)

N

(1— ) Guls,ze) = 3
(2.6) =0
1

+F(s)/1 t°7 ge (x, —t)dt,

where Hy(s) is entire. For an integer m > 0, we have

(2.7) (1—¢)* lim (s+m)D(s)Ca(s,z,e) = HP (z,¢) GV

s——m m!

If m > 0, we have lims_,_,,(s + m)I'(s) = (—=1)"m! and thus we obtain the
following lemma.
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Lemma 2.1. Form >0 and € # 1,

H (x,€)
Ck(fm, Z, 5) = W
Define
- 0 gnittng

(x+ng+ - +mng)s

ni,...,nE=0
pt(ni+-+nk)

For the special case of ék(s,x,e), i.e.,, when s = 0,—1,—2,..., it is clear that
from (2.3) and (2.8)

p—1 00
lal+p(ni+---+n)
e
Ck(_mvxae) = gk(—m,l',f) - Z Z (

2+ Jal+ plns + -+ mi)) "

ai,...,ap=0mn1,...,nEg=0
ptlal

p—1

= Ck:<_m7xa5) - pm Z 5‘a‘Ck (_m7 q"—;M“&.p) 9

ai,...,ar=0
ptlal

where m > 0 and |a| = a1 + - - - + ay, (cf. [10]). It follows from this and Lemma
2.1 that

k) w1 pz_l jal ey (T 1al
Hm (x’g)fp [p} € Hm ;€
15

ay,...,ap=0 p
ptlal
+ |al
=(1—¢g) —m,x,e) —p" glal —mx aap
( ) Ck( s Ly ) p Ck: 5 3
A yeeny ak,_() p
pllal
=(1- E)kfk(—m,x,s).
Lemma 2.2. Let m >0 and |a| = a1 + -+ + ai. Then
; _ ! (k) PR el (24l
Ck(_m7x7€) - m Hm (LU,€) - [p]]g Z B € Hm T7€
ai,...,ap=0

plal

3. p-adic k-ple Riemann zeta function and Kummer-type
congruences

In this section, let p be an odd prime number. The symbol Z,, Q, and C,
denote the rings of p-adic integers, the field of p-adic numbers and the field
of p-adic completion of the algebraic closure of Q,, respectively. The p-adic
absolute value in C, is normalized in such way that |p|, = 1/p.
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We denote two particular subrings of C, in the following manner
op={s€Cpllslp <1}, my={s€Cp||s|, <1}.

Then m,, is a maximal ideal of o,. If s € C, such that |s|, < |p[,, where
r € Q, then s € p"o,, and so we shall also write this as s = 0 (mod p"o,) (cf.
[6, 10, 20]).

Note that the two fields C and C, are algebraically isomorphic, and any one
of the two can be embedded in the other.

We begin with the following result.

Lemma 3.1. Let " = 1,e # 1 and (r,p) = 1. Then there exists h such that
r|(p" —1), and

Hy(e) =1, nh_)ngo Z a™e® = Hp(e), m>1.

Proof. Put h = o(r), where ¢ is the Euler function. Then p#(™ =1 (mod 7)
since (r,p) = 1. This gives p#(™"™ =1 (mod 7),n > 0 and so 7 | (p£("™ — 1).
That is e?"" = e. Thus we have

h n_1 h n_1

o) hn hn
tm . ePet 1
) JLH;OZG ! R_JE’%@Z@ L e e
m—
€— 1 = tm
S
=0
where [t|, < p~*/ (=1, The result follows at once. O

Let r be a positive integer prime to p, and € € C,, a r-th root of unity different
from 1. Let f : Z’; — C, be any continuous function and let a = (a1, ...,ax)
be a variable on Z’;. We define the p-adic integration of f on lej, if it exists, by
the formula

phmi— phe —
(3.1) Zkf( a)dpe(a :n}gnoo Zo ZO flag,... ag)e g%,
’ np—oo ak

where h is a positive integer such that r | (p" — 1) (cf. [13]).
Lemma 3.2. For integer m > 0 and x € C,,

AP = [ (@t o)™ du),

P

where a = (ay,...,a;) € Zk and |a| = a1 + -+ + an.
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Proof. Note that

P11 phme

1
/Zk et(”'a')due(a)=n}@m Z Z etlatarttar) a1 | cax

p nk_>00 a1=0 ar=0
k hng hng;
1—gP etr
_ tx : —
=e H1 (nlgnoo . ) g:(x, 1)
i
(cf. [10]). Taking the coefficient of the terms t™/m! in the above formula, we
obtain the lemma. O
Put |a| = a1+ -+ ay. Let a = (aq,...,a;) be a variable on Z’; and let Z,;

be the group of p-adic units. It is easy to see that

62) [ 5 @@ = [ @) du@- [, @+ duo
jal€z % lalepZ,
(cf. [10]). We use the notation

n]. = 1—&"

1—¢’

Now, we need to compute (3.2). The following lemma deals with the second
integral in (3.2).

Lemma 3.3. For integer m > 0 and x € C,,

p—1

p" z+la
o @l = 20 S g (2l )
p [p]a -0 p
la|€PZy ai,...,ap=
ptlal
where a = (ay,...,a;) € Zk and |a| = a1 + -+ + an.
Proof. Note that
t(z+
e+ a)
P
|a|epr
p—1 phnl—l_l phnkfl_l k
= e lim --- lim E E H(aet)aﬂrpbi
ny—oo N —>00
ay, ..,ak:0 b1:0 bk:() =1
ptlal
p—1 b phri—1_q phreTl_1 g
=e” lim --- lim E H(Eat)‘“ . (Eet)pbi
ni—00 N — 00
ar,...,ap=0i=1 b1=0 by=0 =1
ptlal
p—l k s
. . 1 —¢ee?
— E gt +ak gt(ztar+-+ar) iy ... lim H - s
n1—00 N — 00 1 — ePetp
at,...,ap=0 i=1

plal
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p—1
= [ 1}1@ Z €a1+--»+a,€g€p (tp)et(w+a1+“'+ak).
p

€ ay,...,ar=0
ptlal

Taking the coefficient of the terms ¢™ /m! in the above formula, we obtain the
lemma. O

Lemma 3.4. For integer m > 0 and x € C,,

m p—1

[ Gl = aPwe - Lo 3 g (),

lalezy al:;l-)HZTZO
'LUh€T'€a:(al,“,’ak)€Z]; and|a‘:a1+...+an'
Proof. By (3.2), Lemmas 3.2 and 3.3 we obtain the desired identity. O

Lemma 3.5. Let v € my,. The function

m p—1
—m— HP (z,¢) — ﬁ Z elal (k) (x+pa|’€p)

at,...,ar=0
ptlal

admits a continuation from the dense subset {0,—1,...} C Z, to a continuous
function

Cp(s,x,€) 1 Zy — C,
and
Gals,2.8) = [ g (ot la) e
la|ezZ)
where a = (ay,...,a,) € Zk and |a| = a1 + -+ + an.
Proof. Let |a] € Z,x € m;, and let m =m’ (mod (p — 1)p™). It is easy to see
that (z + |a])™ = (z + |a)™ (mod p"*'o,). Therefore we have

(3.3) / z" (z + |a))™dpe(a) = / 2 (z + |a))™ due(a) (mod Pn+10p)
|a|€Z; |a|€Z;<
and they would also belong to a continuous p-adic function on Z,. The result

now follows from Lemma 3.4. O

If t € Cp such that [t|, < 1, then for any a € Z, a + pt = a (mod poy).
Thus we define

w(a + pt) = w(a)

for these values of t and the Teichmiiller character w. We also define

(a+pt) =w ' (a)(a+pt)
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for t € C, such that |t|, <1 (cf. [16, 20]). We define a function (, x(s,t,€) on
Zy, by

(3.4) Coilsitye) = / 2 {lal +pt) " *dpc(a),
|a|EZ;
where |a| = a1 + -+ + a; and ¢t € C,, such that |¢], < 1.

Theorem 3.6 (p-adic k-ple Riemann zeta function). For t € C, such that
[t], <1, the function (p, k(s,t,€) is analytic on Z, and

Goals,1,2) = i () /||z (] + pt) — 1)"de0)

holds, which interpolates (1 — 6)k5k(—m,pt,s) in the sense that

k p—1
— = Uy L E ‘a|
m7t,€ Hr(rlf) t, € ( ) 5“1\ Hr(rlf) <t+,£ )
<p,k( ) (p ) p [ ]E P

at,...,ap=0
ptlal

for integers m > 0 with m =0 (mod p — 1) and |a] = a1 + - -+ + ay.

Proof. From Lemma 3.5, (, x(—s,t,€) can be written uniquely as the Mahler
expansion (cf. [20])

Gatosit) =3 0a((). o= [y el =P

lalez)

and

anl=| [ 21 (al+p) = V"dpc(a)
la|ezZ)

< sup [(Ja] +pt) —1[;
aEZ;‘;
la|€z)y

=p " =0 as n— oo.

Note that the coefficients a,, are given by
An = AnCp,k(_Su t, 5) |S:07
where Af(x) = f(z + 1) — f(x). Moreover we have

1

—|an—>0 as n — oo,
n

so that (p x(s,t,¢) is analytic. Therefore the result follows from Lemma 2.2
and Lemma 3.5. (]

From Lemma 3.4 and (3.3), we also have:
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Corollary 3.7. Let m =m/ (mod p"(p—1)) and let t € C, such that |t|, < 1.
Then
m p—1

H,(ff)(pt,e) - ﬁ Z slalH,(ff) (t + |a7€p>
€ ai,...,ap=0 p
ptlal
m p—1
= HT(:/)(pt,a) — ﬁ Z a'“le:/) (t + |Z,ep> (mod p"*to,).

€ al,...,akZO
pflal

In particular if £ = 0 and k = 1, we an rewrite Corollary 3.7 as

/

m m

p p
[ple [Pl
which is the same as (23) in [13]. If e = —1 in (3.5), then we have the following
corollary.

(3.5)  Hpn(e) — Hyp (€7)  (mod p™Floy),

Hp, (eP) = Hp (2) —

Corollary 3.8. If m =m’ (mod p™(p — 1)), then
(1—p™) Hp(—1) = (1 —p™ )Hp(~1) (mod p"*+'Z,).
By (1.5) and Corollary 3.8, it is easy to see that
B ’ ’ B ’
_am __om+1 m+l _ 4 m _om/+1 m’+1 nt1
(3:6) (1-p™)(1-2m) 22 = (11— ) P (g iz
If we further assume that m+1 % 0 (mod p— 1), then we have 1/(1—2m"1) =

1/(1 — 2" *1) (mod p"t'Z,). Multiplying these two congruences, we obtain
the Kummer congruences for the Bernoulli numbers (see [13, 20]):

Corollary 3.9 (Kummer congruences). Ifm+1# 0 (mod p—1) and if m = m/
(mod p™(p — 1)), then

Bm+1 / Bm’Jrl
1—p™ =(1-p™ d p™t7Z,).
(1-p )m+1 (1-p )m,+1 (mod p""Zy,)
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